Max Transform¶
The max transform computes the max of a window. When combined with the SlidingWindow
abstraction, the max transform can be used to compute the max
feature of a time series. The max is defined as:
\[ \text{max}(x) = \max_{i=1}^n x_i \]
where \(x\) is a vector of length \(n\).
Bases: Transform
Compute the max of the values in x
.
__call__(signal_window, where=lambda : not np.isnan(x), initial=-np.inf)
¶
Compute the max of the signal window provided.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
signal_window | ndarray | The signal window to find the max of. | required |
where | Callable[[Union[int, float, int_, float_]], Union[bool, bool_]] | A function that takes a value and returns | lambda : not numpy.isnan(x) |
initial | Union[int, float, int_, float_] | The initial value to use when computing the max. Default is | -inf |
Returns:
Type | Description |
---|---|
Union[float_, int_] | A scalar value representing the max of the signal. |
Examples¶
import numpy as np
import autonfeat as aft
# Random data
n_samples = 100
x = np.random.rand(n_samples)
# Create sliding window
ws = 10
ss = 10
window = aft.SlidingWindow(window_size=ws, step_size=ss)
# Create transform
tf = aft.MaxTransform()
# Get featurizer
featurizer = window.use(tf)
# Get features
features = featurizer(x)
# Print features
print(window)
print(tf)
print(features)
If you enjoy using AutonFeat
, please consider starring the repository ⭐️.