Skip to content

Inter-Quartile Range Function

The inter-quartile range function computes the inter-quartile range of the data in a sliding window. The inter-quartile range is the difference between the \(75^{th}\) and \(25^{th}\) percentiles of the data and can be defined as:

\[ \text{IQR} = \text{Q3} - \text{Q1} \]

where \(\text{Q1}\) and \(\text{Q3}\) are the \(25^{th}\) and \(75^{th}\) percentiles of the data, respectively.

Compute the inter-quartile range of the values in x.

Parameters:

Name Type Description Default
x ndarray

The array to compute the IQR of.

required
method str

The method to use when computing the quantiles. Default is 'linear'. See numpy.quantile for more information.

'linear'
where Callable[[Union[int, float, int_, float_]], Union[bool, bool_]]

A function that takes a value and returns True or False. Default is lambda x: not np.isnan(x) i.e. a measurement is valid if it is not a NaN value.

lambda : not numpy.isnan(x)

Returns:

Type Description
Union[float, float_]

The IQR of the values in x.

Examples

import numpy as np
import autonfeat as aft
import autonfeat.functional as F

# Random data
n_samples = 100
x = np.random.rand(n_samples)

# Create sliding window
ws = 10
ss = 10
window = aft.SlidingWindow(window_size=ws, step_size=ss)

# Get featurizer
featurizer = window.use(F.iqr_tf)

# Get features
features = featurizer(x)

# Print features
print(features)

If you enjoy using AutonFeat, please consider starring the repository ⭐️.