Inter-Quartile Range Function¶
The inter-quartile range function computes the inter-quartile range of the data in a sliding window. The inter-quartile range is the difference between the \(75^{th}\) and \(25^{th}\) percentiles of the data and can be defined as:
where \(\text{Q1}\) and \(\text{Q3}\) are the \(25^{th}\) and \(75^{th}\) percentiles of the data, respectively.
Compute the inter-quartile range of the values in x
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x | ndarray | The array to compute the IQR of. | required |
method | str | The method to use when computing the quantiles. Default is 'linear'. See | 'linear' |
where | Callable[[Union[int, float, int_, float_]], Union[bool, bool_]] | A function that takes a value and returns | lambda : not numpy.isnan(x) |
Returns:
Type | Description |
---|---|
Union[float, float_] | The IQR of the values in |
Examples¶
import numpy as np
import autonfeat as aft
import autonfeat.functional as F
# Random data
n_samples = 100
x = np.random.rand(n_samples)
# Create sliding window
ws = 10
ss = 10
window = aft.SlidingWindow(window_size=ws, step_size=ss)
# Get featurizer
featurizer = window.use(F.iqr_tf)
# Get features
features = featurizer(x)
# Print features
print(features)
If you enjoy using AutonFeat
, please consider starring the repository ⭐️.