Max Function¶
The max function computes the max of a window. When combined with the SlidingWindow
abstraction, the max function can be used to compute the max
feature of a time series. The max is defined as:
\[ \text{max}(x) = \max_{i=1}^n x_i \]
where \(x\) is a vector of length \(n\).
Compute the max of the values in x
where where
is True
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x | ndarray | The array to compute the max of. | required |
where | Callable[[Union[int, float, int_, float_]], Union[bool, bool_]] | A function that takes a value and returns | lambda : not numpy.isnan(x) |
initial | Union[int, float, int_, float_] | The initial value to use when computing the max. Default is | -inf |
Returns:
Type | Description |
---|---|
Union[float, float_] | The max of the values in |
Examples¶
import numpy as np
import autonfeat as aft
import autonfeat.functional as F
# Random data
n_samples = 100
x = np.random.rand(n_samples)
# Create sliding window
ws = 10
ss = 10
window = aft.SlidingWindow(window_size=ws, step_size=ss)
# Get featurizer
featurizer = window.use(F.max_tf)
# Get features
features = featurizer(x)
# Print features
print(features)
If you enjoy using AutonFeat
, please consider starring the repository ⭐️.