Max Function¶
The min function computes the min of a window. When combined with the SlidingWindow
abstraction, the min function can be used to compute the min
feature of a time series. The min is defined as:
\[ \text{min}(x) = \min_{i=1}^n x_i \]
where \(x\) is a vector of length \(n\).
Compute the min of the values in x
where where
is True.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x | ndarray | The array to compute the min of. | required |
where | Callable[[Union[int, float, int_, float_]], Union[bool, bool_]] | A function that takes a value and returns | lambda : not numpy.isnan(x) |
initial | Union[int, float, int_, float_] | The initial value to use when computing the min. Default is | inf |
Returns:
Type | Description |
---|---|
Union[float, float_] | The min of the values in |
Examples¶
import numpy as np
import autonfeat as aft
import autonfeat.functional as F
# Random data
n_samples = 100
x = np.random.rand(n_samples)
# Create sliding window
ws = 10
ss = 10
window = aft.SlidingWindow(window_size=ws, step_size=ss)
# Get featurizer
featurizer = window.use(F.min_tf)
# Get features
features = featurizer(x)
# Print features
print(features)
If you enjoy using AutonFeat
, please consider starring the repository ⭐️.