Module auton_survival.models.cph.dcph_torch
Classes
class DeepCoxPHTorch (inputdim, layers=None, optimizer='Adam')
-
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:
to
, etc.Initializes internal Module state, shared by both nn.Module and ScriptModule.
Class variables
var dump_patches : bool
var training : bool
Methods
def forward(self, x) ‑> Callable[..., Any]
class DeepRecurrentCoxPHTorch (inputdim, typ='LSTM', layers=1, hidden=None, optimizer='Adam')
-
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:
to
, etc.Initializes internal Module state, shared by both nn.Module and ScriptModule.
Class variables
var dump_patches : bool
var training : bool
Methods
def forward(self, x) ‑> Callable[..., Any]